IWMI


Farmer explaning his experience with Desho grass to field day visitors at Kolugelan, Jeldu (Photo credit - ILRI / Adie)

Farmer explaining his experience with Desho grass to field day visitors at Kolugelan, Jeldu (Photo credit – ILRI / Aberra Adie)

Small-scale farmers face numerous challenges to invest in natural resource management practices.

The problems are interlinked, with such perverse economic problems as high transaction costs and risk rooted in the lack of comprehensive institutional and organizational services to farmers for risk reduction and incentive creation. Failure to address such a missing link undermines success in natural resource management.

This paper ponders the importance of such a missing link and proposes an analytic framework that explicitly integrates the economics of natural resource management into institutional and organizational analysis. The framework features the instrumentality of integrated institutional and organizational innovation to create opportunities and incentives to small-scale farmers to encourage investment in natural resource management practices.

Read the article

Advertisement
Activities conducted as part of NBDC innovation platform work in Fogera (photo credit: ILRI/Apollo Habtamu).

Activities conducted as part of NBDC innovation platform work in Fogera (photo credit: ILRI/Apollo Habtamu).

This paper draws lessons from two years of work with ‘innovation platforms’ that were established by the Nile Basin Development Challenge (NBDC) program in an attempt to strengthen landscape-level rainwater management in Ethiopia. The NDBC’s work included the use of an innovation fund to support pilot interventions.

This paper particularly reviews questions of political economy and equity in platform activities and examines decision-making processes, the roles and level of influence of different platform members, the nature of platform-community relations and the extent to which different groups are benefiting.

The information presented in this working paper was gathered from a mixture of sources: interviews conducted with platform members; observation of meetings and activities by NBDC staff; official minutes of platform meetings and other associated events (e.g. training sessions) and informal discussions between NBDC staff and platform members.

This paper is the latest of a ‘research for development (R4D)’ series of working papers developed by the Challenge Program for Water and Food (CPWF).

Read the working paper ‘Innovation Platforms to Enhance Participation in Rainwater Management: Lessons from The Nile Basin Development Challenge with a Particular Focus on Political Economy and Equity Issues‘.

Discover the rest of the CPWF’s R4D working paper series.

In late 2013, the Nile Basin Development Challenge developed eight key messages. Taken together, these messages form a new paradigm that can help further transform policies and programs and better enable poor smallholder farmers to improve their food security, livelihoods and incomes while conserving the natural resource base.

The seventh key message from the Nile Basin Development Challenge is to ‘attend to downstream and off-site benefits of rainwater management as well as upstream or on-farm benefits and costs.’ How do land and water management interventions affect, positively or negatively, downstream and/or off-site users? Erosion and siltation management at site level has far-reaching consequences for people kilometers away from these sites. Smart land and water management interventions consider such trade-offs upfront and throughout.

See the overall digital story ‘An integrated watershed rainwater management paradigm for Ethiopia: Key messages from the NBDC‘.

Download the brief covering the full set of key messages.

Read the full technical report “A new integrated watershed rainwater management paradigm for Ethiopia: Key messages from the Nile Basin Development Challenge, 2009–2013


This digital story was produced to communicate the key messages resulting from the Nile Basin Development Challenge (NBDC). The Nile BDC aimed to improve the livelihoods of farmers in the Ethiopian highlands through land and water management and was funded by the Challenge Program for Water and Food. The eight key messages constitute a ‘new integrated watershed rainwater management paradigm’ and are based on the outputs and outcomes of trans-disciplinary scientific research for development

The Nile Basin Development Challenge (NBDC) is one of six global focal basins of the Challenge Program on Water and Food (CPWF). The overall objective of the CPWF program is to increase water productivity and resilience of social and ecological systems, through broad partnerships and research that leads to local impact and wider change.
Within this framework, the NBDC has set out to improve and build on rainwater management strategies as a way to improve livelihoods and reduce poverty. The focus of the work has been on the Blue Nile where rainfed agriculture dominates and over 80% of the population relies on subsistence, rainfed agriculture. In contrast, the downstream countries, principally Egypt and Sudan, are dominated by large-scale irrigated agriculture. However they will also potentially benefit from improvements in rainwater management upstream through reductions in land degradation and associated soil erosion which when transported downstream reduces the efficacy of irrigation schemes.

To meet the Nile Basin Development Challenge, it was found necessary to adopt an outcome logic model in which a range of approaches have been used to generate outputs and outcomes to support policy development and enhance best practices in relation to selected land management. These are briefly presented in summary here with subsequent papers in the proceedings developing the issues in greater a depth.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

This study was conducted in Mizewa watershed which is located in Blue Nile Basin (BNB) to estimate on-site financial cost of erosion in terms of yield reduction taking maize as representative crop. For this purpose, discharge measurement and runoff sampling was made during the rainy season of 2011 at the outlet of three sub watersheds within Mizewa catchment; lower Mizewa (MZ0), Upper Mizewa (MZ1) and Gindenewur (GN0).

The samples were filtered to separate the sediment which was subsampled for determination of suspended sediment concentration (SSC), sediment fixed NO3 -, NH4 + and available phosphorous (P) contents. The filtered water was used to assess dissolved nitrate and dissolved phosphate. The on-site financial cost of erosion was estimated based on productivity change approach (PCA) focusing on available NP losses.

The result revealed that the SSC and its NP content varied in space and time, in which higher and lower SSC occurred towards the beginning and end of the rainy season, respectively. The mean seasonal discharge was found to be 2.12±0.75, 1.49±0.52 and 0.57±0.20 m3/ sec at MZ0, MZ1 and GN0 stations in that order while the corresponding sediment concentration was 510±370 mg/l, 230±190 mg/l and 370±220 mg/l. This led to the total suspended sediment loss (SSL) of 4 ton/ha/year, 2 ton/ha/year and 3 ton/ha/year from the respective subwatersheds. The on-site financial cost due to N and P lost associated with SSL was estimated to be USD 200/ha, USD 186/ha and USD 227/ha from MZ0, MZ1 and GN0 watersheds, respectively.

The study revealed that the economic impacts of soil erosion which is variable based on the characteristics of land resources and management practices are immense and deserve due attention. The result may help in sensitizing both farmers and decision-makers about the risk of soil erosion and in targeting management practices to overcome the challenges.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Restrictive soil layers commonly known as hardpans restrict water and airflow in the soil profile and impede plant root growth below the plough depth. Preventing hardpans to form or ameliorate existing hardpans will allow plants root more deeply, increase water infiltration and reduce runoff, all resulting in greater amounts of water available for the crop (i.e. green water). However, there has been a lack of research on understanding the influence of transported disturbed soil particles (colloids) from the surface to the subsurface to form restrictive soil layers, which is a common occurrence in degraded soils.

In this study, we investigated the effect of disturbed soil particles on clogging up of soil pores to form hardpans. Unsaturated sand column experiments were performed by applying 0.04 g/ml soil water solution in two sand textures. For each experiment, soil water solution infiltration process was visualized using a bright field microscope and soil particles remained in the sand column was quantified collecting and measuring leachate at the end of the experiment in the soil and water lab of Cornell University.

Preliminary results show that accumulation of significant amount of soil particles occur in between sand particles and at air water interfaces, indicating the clogging of soil pores occurs as a result of disturbed fine soil particles transported from the soil surface to the subsurface.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Poor rainwater management (RWM) practices and resultant problems of land degradation and low water productivity are severe problems in the rural highlands of Ethiopia.

The current study was undertaken at Meja watershed, which is located in the Jeldu district of Oromia region. The study investigated rainwater management practices and associated socio-economic and biophysical conditions in the watershed. The existing RWM interventions, their extent and the nature of changes in land use and land cover (LULC) conditions were mapped and evaluated.

Results indicated that over the two decades between 1990 and 2010 there was an increase in the extent of cultivated land and large expansion in eucalyptus plantation at the expense of natural forest and grazing lands. Results indicate that, with few exceptions of RWM interventions practised, there were mainly poor and inefficient rainwater management practices. The overall effect leads to inadequacy of water for household consumption, livestock and for intensifying agricultural production via small scale irrigation systems. Deforestation and poor resource management resulted in soil degradation, reduction of hydrological regimes and water productivities in the watershed.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

The hydrology of Holetta River and its seasonal variability is not fully studied. In addition to this, due to scarcity of the available surface water and increase in water demand for irrigation, the major users of the river are facing a challenge to allocate the available water.

Therefore, the aim of this research was to investigate the water availability of Holetta River and to study the water management in the catchment. Soil and Water Assessment Tool (SWAT) modelled the rainfall runoff process of the catchment. Statistical (coefficient of determination [R2], Nash- Sutcliffe Efficiency Coefficient [NSE] and Index of Volumetric Fit [IVF]) and graphical methods used to evaluate the performance of SWAT model.

The result showed that R2, NSE and IVF were 0.85, 0.84 and 102.8, respectively for monthly calibration and 0.73, 0.67 and 108.9, respectively, for monthly validation. These indicated that SWAT model performed well for simulation of the hydrology of the watershed. After modelling the rainfall runoff relation and studying the availability of water at the Holetta River, the water demand of the area assessed. CropWat model and the survey analysis performed to calculate the water demand in the area. The total water demand of all three major users was 0.313, 0.583, 1.004, 0.873 and 0.341 MCM from January to May, respectively. The available river flow from January to May obtained from the result of SWAT simulation. The average flow was 0.749, 0.419, 0.829, 0.623 and 0.471 MCM from January to May respectively. From the five months, the demand and the supply showed a gap during February, March and April with 0.59 MCM.

Therefore, in order to solve this problem alternative source of water supply should be studied and integrated water management system should be implemented.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Over the past five decades, gullying has been widespread and has become more severe in the Ethiopian highlands. Only in very few cases, rehabilitation of gullies has been successful in Ethiopia due to the high costs.

The objective of this paper is to introduce cost effective measures to arrest gully formation. The research was conducted in the Debre-Mewi watershed located at 30 km south of Bahir Dar, Ethiopia.

Gullying started in the 1980s following the clearance of indigenous vegetation and intensive agricultural cultivation, leading to an increase of surface and subsurface runoff from the hillside to the valley bottoms. Gully erosion rates were 10–20 times the measured upland soil losses. Water levels, measured with piezometers, showed that in the actively eroding sections, the water table was in general above the gully bottom and below it in the stabilized sections.

In order to develop effective gully stabilizing measures, we tested and then applied the BSTEM and CONCEPT models for their applicability for Ethiopian conditions where active gully formation has been occurring. We found that the model predicted the location of slips and slumps well with the observed groundwater depth and vegetation characteristics.

The validated models indicated that any gully rehabilitation project should first stabilize the head cuts. This can be achieved by regrading these head cuts to slope of 40 degrees and armoring it with rock. Head cuts will otherwise move uphill in time and destroy any improvements. To stabilize side walls in areas with seeps, grass will be effective in shallow gullies, while deeper gullies require reshaping of the gullies walls, then planting the gully with grasses, eucalyptus or fruit trees that can be used for income generation. Only then there is an incentive for local farmers to maintain the structures.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

The Nile Basin

The Nile Basin

As the Nile Basin Development Challenge (NBDC) comes to an end this short document from the CGIAR Challenge Program on Water and Food offers a summary of research conducted in the past four years.

It covers:

  • What the NBDC was about
  • The main challenges addressed
  • The eight key messages identified in 2013
  • Some outcomes and lessons

As much NBDC work is slowly integrated into CGIAR research programs on Water, Land and Ecosystems and on Integrated Systems for the Humid Tropics, this summary is a neat and short introduction to some essential issues that NBDC has left as a legacy to improve land and water management in Ethiopia and the wider Nile Basin.

Read the full Nile Basin Summary

Next Page »