IWMI


Most soil erosion studies conducted in Ethiopia are focused on quantification of sediment and lack specific information on temporal and spatial variability of sediment and its associated plant nutrients loss. This study was therefore quantified and characterized runoff and sediment along with estimated the on-site financial cost of erosion in terms of its concomitant crop yield loss due to the nitrogen and phosphorus lost in consequence of erosion.

Data on discharge and runoff samples for sediment concentration and nutrient content was collected at three monitoring stations (Melka, Galesssa and Kollu) in Meja watershed in Jeldu district, in the Ethiopian part of the Blue Nile Basin. Daily samples collected during the rainy season were analysed in the laboratory of Ambo University for sediment content of runoff, particle size distribution of the sediment and nitrogen and phosphorus content of both the sediment and runoff. Preliminary results indicate that both runoff volume and sediment concentration vary with space and time. While the maximum runoff volume was recorded in the middle of the rainy season, sediment concentration decreased towards the end of the rainy season in response to increased ground cover. The average suspended sediment concentration during the rainy season was 3.0 ± 1.1, 2.2 ±1.3 and 1.4 ± 0.9 g L-1 while the total sediment yield ranged from 74 t km-2, 248 t km-2 and 604 t km-2 at Melka, Galesssa and Kollu, respectively. The financial cost of erosion was estimated at 595, 510 and 2475 ETB ha-1 from Melka, Kollu and Galessa, respectively.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Advertisement

The current paper discusses the use of hydrological modelling tool to understand sustainable land management interventions in the Blue Nile basin of Ethiopia.

A micro-watershed named Mizewa with a drainage area of 27 km2 in Fogera district was selected and instrumented with hydrological cycle observation networks in the year 2011. The SWAT hydrological modelling tool was used to simulate landscape-wide Soil and Water Conservation (SWC) investments.

Simulations of the selected investments modelled in this analysis suggest that improvements in infiltration, decreases in surface runoff and decreases in erosion are achievable in the watershed. Further simulations suggest that a landscape-wide approach of terrace and bund construction has the greatest effect in terms of decreasing surface runoff, decreasing sediment yield and increasing groundwater flow and shallow aquifer recharge.

A comprehensive landscape investment of terraces on slopes greater than 5% and bunds maintained on slopes less than 5% would decrease surface flow by almost 50%, increase groundwater flow by 15% and decrease sediment yield from erosion by 85%. However, constructing terraces in areas with greater than 5% slope (without constructing bunds in areas under 5% slopes) has a similar effect whereby surface flow and sediment yield decreases by 45 and 83%, respectively and groundwater flow increases by 13%. Residue management also has a significant effect on surface flow and erosion in the Mizewa watershed. Average annual surface flow decreased 17 when adopting residue management on all agricultural land and 26% when coupling terracing on steep slopes with residue management in mid-range slopes.

These analyses provide the foundation for understanding feasible outcomes given a more comprehensive investment strategy. Results stemming from the current work can be paired with household level socio-economic data in order to assess program investment alternatives taking into account household constraints to Sustainable Land and Watershed Management (SLWM) investment and maintenance on private and public lands.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

This paper examines the advance time of furrow irrigation at Koga.

Koga irrigation scheme was developed to irrigate about 7004 ha. Furrow irrigation is the recommended method for the distribution of water. However, furrow irrigation has inherent inefficiencies due to deep percolation on the upper end and runoff at the lower end of the furrow. These losses depend on furrow length, furrow gradient, surface roughness, stream size and cutoff time. These factors play significant role to influence the advance time of irrigation and the operation rule of the scheme.

The experiment was conducted during 2012 irrigation season in two periods (February and April). The advance time of irrigation was monitored at three discharge rates and four furrow gradients at 90–110 m furrow length. The required discharge was measured using RBC flume. The average advance time at respective discharge rates of 0.3, 0.6 and 0.8 litre/sec range from 290–460 min, 150–437 min and 100–294 min during 1st irrigation; and 115–370 min, 78–189 min and 43–217 min during 2nd irrigation. The advance time vary greatly among the discharge rates when the furrow length increases. The advance time of water at 0.5, 1.0, 2.0 and 2.5 % gradients was 236, 181, 197 and 398 min at 1st irrigation and 163, 175, 220 and 88 min at 2nd irrigation respectively. Furrow gradients and surface irregularities result in great variation of advance time. The advance time becomes shorter when the field gets smoother during 2nd irrigation. Under non-levelled and irregular field conditions, 0.6–0.8 litre/sec application rate can be suggested to irrigate 30–40 m furrow lengths in order to improve application efficiency above 60% and to optimize the daily operation rule of the overall scheme.

The result of this study indicates the relevance of examining the furrow length, discharge and application time recommended in the feasibility study of irrigation schemes.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Mixed crop–livestock farming system is a major livelihood strategy in most sub-Sahara African countries. Low water use efficiency and water scarcity characterize the dominant rainfed agricultural production system in the densely populated highlands of Ethiopia. Improving water productivity in the rainfed system is among the ways of overcoming the water scarcity challenge.

This study was conducted in Meja watershed, located in Jeldu district, West Shewa in the Ethiopian part of the Blue Nile Basin to estimate economic crop water productivity based on agro-ecology and crop management practices. The watershed was classified into three landscape positions (local agro-ecologies) and major crops representing at least 70% of each landscape position were identified through discussion with farmers and development agents.

Five farmer fields were randomly selected for each major crop and crop management practices implemented by the farmers were monitored and yield (grain or tuber and straw) was measured at harvest. The local market value of the crops and the production cost was estimated based on the local market value for labour and other inputs. CROPWAT model was used to estimate effective precipitation based on weather data generated using NewLocClim and crop characteristics.

The result indicated that the landscape positions, crop variety and management practices significantly influenced the net economic water productivity. The net economic crop water productivity for barley, wheat, tef, sorghum and maize grains and fresh potato tubers were 3.31, 2.45, 3.09, 3.01 and 5.20 and ETB 13.56 m-3, respectively. Similarly, physical water productivity of the crops ranged from 0.47 for teff to 9.98 kg m-3 for fresh potato tubers. Hence, farmers can enhance economic benefit from the land and water resources they are endowed with rainfed by using improved agronomic practices that could raise grain/tuber and biomass yield. Enhancing improved input use, improving access to market for outputs and integrating livestock with crops may further augment the benefit at system scale.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Understanding the basic relationships between rainfall, runoff, soil moisture and ground water level are vital for an effective and sustainable water resources planning and management activities. But so far there are no hydrological studies in Meja watershed that aims to understand the watershed characteristics and runoff generation processes.

This study was conducted to understand runoff generation processes and model rainfall runoff relationship in Meja watershed having a drainage area of 96.6 km2. The watershed is one of the three research sites of International Water Management Institute (IWMI) developed in early 2010 in the upper Blue Nile Basin of Ethiopia. In the study, primary data of soil moisture, shallow ground water level, rainfall and runoff were collected from the hydrological monitoring network in the watershed. Hydrological models like HBV and RRL SMAR were configured to understand the relationship between rainfall and runoff in the watershed.

Relationships between rainfall, soil moisture, shallow ground water level and discharge were developed to understand runoff generation processes in the watershed. According to one year and three months data, there is no strong daily rainfall and runoff relationship (r2 <0.5) in Meja and Kolu which is nested sub-watershed; this may be due to abstractions such as irrigation and human interventions in the watershed. Ground water level and runoff has strong relationship (r2> 0.65) in monthly basis of Kolu nested sub-watershed but there is moderate relationship of rainfall and ground water level. There is strong linear relationship of rainfall and monthly averaged volumetric soil moisture in most layers of Meja and its nested sub-watersheds. The general relationship between runoff and monthly averaged soil moisture at different layers in Meja watershed and Kolu is strong and linear. Analysis of rainfall runoff models indicated better performance of HBV than RRL SMAR model.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

The Nile Basin Development Challenge (NBDC) Program of the Challenge Program on Water and Food (CPWF) has been working in three woredas (districts) in Ethiopia – Jeldu, Diga and Fogera.

Each of the project established an innovation platform (IP) in which lessons and knowledge are shared and joint approaches towards problem identification and solutions are sought.

The Jeldu IP was established in September 2011 with 25 members representing farmers, district level institutions including the Office of Agriculture, Livestock Agency, Women’s Affairs, Office of Environmental Protection and Land Administration, Cooperatives Promotion and the Office of Water, Mining and Energy, and research and development partners such as Ambo University, Holetta Research Center, RiPPLE (Research-inspired Policy and Practice Learning in Ethiopia), the German development cooperation program on sustainable land management (GIZ-SLM), the International Livestock Research Institute (ILRI) and the International Water Management Institute (IWMI).

Innovation platform meeting at Jeldu district administration office (Photo credit: ILRI/Adie)

Innovation platform meeting at Jeldu district administration office (Photo credit: ILRI/Aberra Adie)

More institutions joined the platform in the course of its operation including a local NGO called HUNDEE which later took on the responsibility of facilitating the IP.

The IP conducted a total of seven meetings from September 2011 up to December 2013. Earlier meetings focused on identifying challenges and opportunities of rainwater management interventions along with the key priority issues of land and water management in the district. Later meetings were used for sharing of lessons and experiences around the action research and beyond.

Community engagement exercises

Despite some representation of farmers in the IP at the district level, the NBDC team early on felt that a more representative community members were required to decide on priority issues while ensuring effective participation of the community. Subsequently community members from Kolugelan, Sirity and Chilanko kebeles representing different gender, age, wealth, and education levels were invited to participate in platform discussions. After thorough discussion among IP members and the community, it was agreed that soil erosion was the most serious problem in the area.

Community engagement exercise with men and women groups at Jeldu (Photo credit: ILRI/Adie)

Community engagement exercise with men and women groups at Jeldu (Photo credit: ILRI/Aberra Adie)

Action research

The CPWF innovation fund granted USD 6,000 to conduct action research around the identified problem by the IP and the community. Platform members were requested to write a research proposal. A series of discussions were made in IP meetings and community dialogues to point out possible solution options to alleviate soil erosion problems. Primary and secondary factors contributing to soil erosion and its effects at different levels were discussed with deforestation and overgrazing of land by livestock and feed shortage identified as major contributing factors to soil erosion.The IP group identified fodder development as a feasible intervention that could also support the physical soil and water conservation campaign of the government. Following this,  technical group (TG) members of the platform (with experts and researchers from Holetta research center, Ambo University, HUNDEE, Livestock Agency and Office of Agriculture) carried out action research on fodder development.

Fodder Development Intervention – 2012

Kologelan Kebele was chosen as a first pilot intervention for its strategic representation of other kebeles in the woreda. Initially about 32 farmers registered to take part in the fodder intervention. But eventually more and more farmers showed interest when they saw their friends planting forages in their plots. Participating farmers became 96, even though project follow up only focused on the initially registered 32 farmers. The emphasis was on forage options that are already in the system, instead of introducing a brand new material to the farming system.

Desho and Wodajo

Desho grass (Pennisetum pedicellatum ), was initially introduced by Wodajo, a farmer in Chilanko kebele. Wodajo brought some splits of the grass when he went to Southern Ethiopia for an experience sharing visit sponsored by the government. He planted the grass at his backyard and the grass performed so well that it attracted the attention of his fellow farmers and the government’s extension workers. Wodajo then started making money from the sales of the splits. In one year, he sold the grass for over Birr 40,000. Wodajo and Desho became very popular in the woreda. In fact Wodajo currently owns a wood workshop in Gojo town as a result of the capital he made from consecutive sales of the Desho grass. This has played a huge motivational role in the community for the adoption of Desho grass.

The farmers at Kolugelan were also interested to plant this grass at their backyards and on soil bands for livestock feed and soil water conservation (SWC). All 96 farmers planted Desho grass (some in backyards, some on soil bands, some both ways). Farmers were also provided with Tree Lucerne (Chamaecytisus Palmensis), and Napier grass (Pennisetum purpureum).

Fodder Development Intervention in 2013

In 2013, the IP expanding the intervention to a larger number of farmers in Kolugelan kebele using an additional USD 10,000. Sixty-five new farmers were registered for fodder intervention though, once again, more farmers joined and a total of 141 additional farmers were issued Desho planting materials. More ‘Wodajos’ appeared among the farmers who planted Desho in 2012. They became sources of planting material for the intervention in 2013. Some of them sold Desho planting material for up to Birr 10,000 to their fellow farmers. Establishing Desho in backyards and on soil bands thus became much clearer in the second year of intervention. During the field day organized by the IP, farmers from neighboring kebeles appreciated the performance of Desho on soil bands and backyards during the dry season.

Farmer explaning his experience with Desho grass to field day visitors at Kolugelan, Jeldu (Photo credit: ILRI/Adie)

Farmer explaning his experience with Desho grass to field day visitors at Kolugelan (Photo credit: ILRI/Aberra Adie)

Capacity development

ILRI staff trained IP technical group members on platform facilitation and participatory research methods, which helped them while undertaking the action research. After the training, HUNDEE, the local NGO assumed the total responsibility of facilitating the IP and overseeing the action research process, including handling of financial matters. This helped NBDC staff to take a backstopping role from some distance. IP members who took part in training events and workshops witnessed their exposure to wider networks adding value to their personal careers and they enjoyed tremendous lessons from one another.

Practical training to farmers about forage management at Kolugelan, Jeldu (Photo credit: ILRI/Adie)

Practical training to farmers about forage management at Kolugelan, Jeldu (Photo credit: ILRI/Aberra Adie)

In both 2012 and 2013, farmers were trained in establishment/management and utilization of feeds to their livestock. The training in the second year included management and utilization of existing/ traditional feed resources along with improved forages.

Achievements and challenges

Farmers during the last field day and stakeholders in the IP closing event which took place on December 31, 2013 evaluated and strongly commended the project’s achievements. They testified that the project has been able to bring them together around a common agenda and that they learned much from the process  itself as well as from one another in the IP and action research process.

They also appreciated the efficient use of resources:

With limited amount of money it has been possible to achieve much – community member

It is the day of celebration of our achievements and looking forward to continued efforts, not closing day – Ato Zegeye, HUNDEE general manager.

The technical group members of the IP witnessed that their skills in conducting participatory research as a team have increased with their involvement in the action research.  Nevertheless, some of the challenges faced by the IP, especially the technical group members include: less acknowledgement and appreciation of their work with the IP by their respective supervisors; occasional conflicts; time management issues as they have their own assignments from their offices, etc.

What next?

This has been a recurring question of both farmers and IP members. Options put on the table include:

  • Farmers request improved cattle breeds for dairy. They want to produce more milk for family and market.
  • They also envision small scale milk processors for production of butter and cheese.
  • Some consider fattening of beef and sheep.
  • Holetta research center heralded the new initiative around Jeldu to apply hormonal synchronization to introduce artificial insemination services.
  • Both farmers and IP members are optimistic about the Ginchi – Gindeberet road which crosses Jeldu (Gojo town) to be asphalted in the near future to facilitate product marketing for a better price.
  • Adding more fodder options, especially legumes, has been raised during the discussions with IP members.
  • Government partners are planning to take Desho Grass to wider distribution in the woreda as part of the watershed development strategy.
  • ILRI/IWMI envisions more activities in the site with CGIAR Research Programs such as Water Land and Ecosystems and Humidtropics.

For all, the message is – ‘strike the iron when it is hot!’

Article contributed by Aberra Adie

Understanding soil hydraulic properties is crucial for planning effective soil and water management practices.

A study was conducted to evaluate the effects of different biochar and charcoal treatments on soil-hydraulic properties of agricultural soils. Biochar and charcoal treatments were applied on 54, undisturbed soil-columns, extracted from three-elevation ranges, with replications along three transects. Daily weight losses of freely draining soil-columns and soil moisture contents, at five tensions, were measured. In addition, field infiltration tests and soil analyses for particle size distribution, bulk-density and organic carbon content were conducted. Moreover, five year event precipitation data, from the watershed, was analysed and exceedance probability of rainfall intensity was computed.

Results show treatments reduced soil moisture contents, for most of the cases. However, treatment effects were significant only at lower tensions (10 and 30 kPa) and within two days after saturation (p<0.05). On the other hand, relative hydraulic conductivity (Kr) coefficients, near saturation, of amended soils were higher than the control. Acidic to moderately acidic soils with high average clay (42%) and low organic carbon contents (1.1%) were dominant. Infiltration rate ranged between 1.9 and 36 mm/h, with high variability (CV = 70%). At the same time, storms with short duration (< 15 min) and high average intensity (6.3 mm/h) contributed for 68% of annual precipitation (1616mm/year).

Dominant soil properties and rainfall characteristics suggest that infiltration could be a major problem on considerable number of fields, in the watershed. This implies, on such fields, constructing physical soil and water conservation structures alone will not reduce runoff and erosion effectively, unless soil infiltration and permeability rates are enhanced through integrated soil management approaches.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

This study uses Tobit and Logit models to examine the impacts of selected small-scale irrigation schemes in the Lake Tana basin of Ethiopia on household income and the likelihood of poverty, respectively.

Data for these analyses were collected from a sample of 180 households. Households using any of the four irrigation systems had statistically significantly higher mean total gross household income than households not using irrigation. The marginal impact of small-scale irrigation on gross household income indicated that each small scale-irrigation user increased mean annual household income by ETB 3353 per year, a 27% increase over income for non-irrigating households.

A Logit regression model indicated that access to irrigation significantly reduced the odds that a household would be in the lowest quartile of household income, the poverty threshold used in this study. Households using concrete canal river diversion had higher mean cropping income per household than those using other irrigation types.

Key challenges to further enhancing the benefits of irrigation in the region include water seepage, equity of water distribution, availability of irrigation equipment, marketing of irrigated crops and crop diseases facilitated by irrigation practices.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Agricultural productivity in Ethiopian highlands is constrained mainly by high climate variability. Although use of soil and water conservation technologies is recognized as a key strategy to improve agricultural productivity, adoption of technologies has been very low as farmers consider a variety of factors in their adoption decision.

This study assesses the adoption pattern of interrelated rainwater management technologies and investigates factors that influence farm household adoption and scaling-up of rainwater management technologies and draws recommendations for policy. Our results show that rainwater management technologies are interdependent to each other implying that technology adoption decisions need to capture the spillover effect on the adoption of other technologies and have follow a multi-dimensional approach. Moreover, our results suggest that instead of promoting blanket recommendations, it is important to understand the socio-economic, demographic characteristics and biophysical suitability of the rainwater management technologies.

Although impact of gender is likely technology-specific and generalization is not possible, our result indicates that male-headed households have a comparative advantage in rainwater management technologies adoption in the Nile Basin and suggests the need to address the constraints of women farmers to give them an opportunity to actively participate in rural economic activities.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Waterlogged Vertisols are amongst the high potential soils where management interventions could result in positive impacts.

This study utilized soil, climate and crop and livestock productivity data and models to demonstrate intensification strategies which increase crop–livestock system productivity and to understand the effects of alternative land use and water management options on water productivity in the Vertisols areas.

The areas have been classified into three slope classes including areas where artificial drainage is not feasible, where Broad Bed and Furrows (BBF) can be used to drain the excess water and naturally drained areas, represented by areas with 0–2%, 2–5% and over 5% slope steepness, respectively. Early planting of wheat (Triticum spp) using BBF on drainable areas and rice (Oryza sativa) or grasspea (Lathyrus sativus) on the flat areas were compared with the traditional practices. Yield and biomass data were obtained from research stations in the area whilst the effective rainfall and crop water requirement were estimated using CROPWAT Model. The feed value of the native grass and crop straw was estimated based on previous works.

With respect to effective rainfall, the water productivity increase due to BBF over the control ranged from 5 to 200%, with an average increase of 57%. Despite higher water consumption of the rice, feeding its residues to livestock enhanced the overall economic water productivity of the system over the natural grazing or grasspea cultivation. Consequently, use of BBF enables growing high value or food crops of choice that may be sensitive to waterlogging whilst tolerant crops can be grown on flat lands allowing utilization of the full growing period. Coupled with livestock integration into the system, the alternatives can enhance food production and resource use efficiency from these ‘marginal’ areas.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

« Previous PageNext Page »