Water


In the Blue Nile basin, crop cultivation is predominantly rainfed and water availability is highly variable across both space and time. As a result, it often constitutes a limiting factor for reaching full agricultural potential in the region. While one third of the basin is estimated to have no soil moisture limitations, the remaining two thirds are crop water constrained in various ways.

Analysis shows that across approximately 40% of the basin available soil moisture is utilized sub-optimally with smart management and crop water limitations can be alleviated. In contrast, across a further 25% of the basin, water deficits strongly limit plant growth. While rainfed agriculture is still possible in some of these areas, appropriate management is even more important. A great deal of variation also exists in terms of market access for agricultural inputs and produce.

Travel time to markets in the basin can be up to 12 hours. One’s distance to market centres influences the accessibility of farm inputs such as fertilizers, improved seeds and veterinary services. Inaccessibility vs. accessibility to population dense areas also determines the potential for agricultural production and the marketing of crops and livestock products, in particular for perishable produce.

To capture the complexity and heterogeneity regarding both crop water limitations and agricultural market access, this study combines information on rainwater management potential and market proximity to map so-called water investment domains (WID). Context-specific recommendations for each of the domains are provided.

In the short term, the results point to a need for agricultural produce strategies that are spatially differentiated and in the longer term for investment in infrastructure in order to enable full utilization of the agricultural potential across the entire basin. The results are intended to guide policymakers and other rural development actors in the identification of appropriate investment decisions and for improved planning of rural development strategies. Thus, the study aligns to the ‘water-centred agricultural growth’ strategy adopted by the Ethiopian Government, developed in response to the poverty and food security challenges faced in the country.

The approach is widely applicable, easily replicable and can be used to inform decision-makers beyond the Blue Nile basin.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Advertisement

A sourcebook from the CGIAR Challenge Program on Water and Food, entitled ‘Addressing Water, Food and Poverty Problems Together—Methods, Tools and Lessons’ presents more than 50 articles on how to improve ecological and social resilience. One of the articles looks at ‘strategies for increasing Livestock Water Productivity in the Blue Nile Basin‘.

The livestock sector is socially and politically very significant in developing countries because it provides food and income for one billion of the world’s poor, especially in dry areas, where livestock keeping is often the only source of livelihoods. Livestock keeping is a major component of agricultural gross domestic product (GDP), providing meat, milk, income, farm power, manure (for fuel, soil fertility replenishment and house construction), insurance, and wealth savings to hundreds of millions of people worldwide.

However, livestock raising is a major consumer of water. In regions such as the Nile where water is a scarce commodity, and the Nile Basin challenge project worked on strategies to improve livestock water productivity (LWP). LWP is a ratio of the total net beneficial livestock-related products and services to the water depleted in producing them. A water accounting approach was used to develop a livestock water productivity (LWP) assessment framework. This framework was then used to identify strategies for increasing LWP, assessing LWP in the Blue Nile Basin, and suggesting opportunities to improve LWP more broadly.

The article explains the four basic strategies of LWP:

  1. Feed sourcing: One key strategy for increasing LWP lies in selecting the most water-productive feed sources that produce enough feed to meet the animals’ needs.
  2. Enhancing animal productivity: Increasing the ratio of feed energy for production to maintenance has high potential for increasing LWP. In Africa, feed scarcity limits intake, implying that most consumed feed is used to support maintenance, leaving little for production.
  3. Conserving water resources: The primary challenge to conserving agricultural water is maintaining high levels of vegetative ground cover to promote increased transpiration,infiltration and soil water holding capacity and decreased evaporation and discharge.
  4. Providing drinking water: Drinking water must be of high quality and available in small but adequate quantities.

The authors of the article conclude: “Where livestock are important components of farming systems, there is a need to integrate livestock management, crop management, land and water use practices and resource degradation into one integrated framework. The LWP framework is a starting point. When tested in diverse production systems, the generic framework was robust in handling conditions ranging from extensive grazing systems to intensive mixed crop-
livestock systems at local, watershed and basin scales.”

Read the sourcebook article ‘Identifying Strategies for Increasing Livestock Water Productivity in the Blue Nile Basin

Read the full sourcebook at: http://waterandfood.org/sourcebook/

Restrictive soil layers commonly known as hardpans restrict water and airflow in the soil profile and impede plant root growth below the plough depth. Preventing hardpans to form or ameliorate existing hardpans will allow plants root more deeply, increase water infiltration and reduce runoff, all resulting in greater amounts of water available for the crop (i.e. green water). However, there has been a lack of research on understanding the influence of transported disturbed soil particles (colloids) from the surface to the subsurface to form restrictive soil layers, which is a common occurrence in degraded soils.

In this study, we investigated the effect of disturbed soil particles on clogging up of soil pores to form hardpans. Unsaturated sand column experiments were performed by applying 0.04 g/ml soil water solution in two sand textures. For each experiment, soil water solution infiltration process was visualized using a bright field microscope and soil particles remained in the sand column was quantified collecting and measuring leachate at the end of the experiment in the soil and water lab of Cornell University.

Preliminary results show that accumulation of significant amount of soil particles occur in between sand particles and at air water interfaces, indicating the clogging of soil pores occurs as a result of disturbed fine soil particles transported from the soil surface to the subsurface.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Poor rainwater management (RWM) practices and resultant problems of land degradation and low water productivity are severe problems in the rural highlands of Ethiopia.

The current study was undertaken at Meja watershed, which is located in the Jeldu district of Oromia region. The study investigated rainwater management practices and associated socio-economic and biophysical conditions in the watershed. The existing RWM interventions, their extent and the nature of changes in land use and land cover (LULC) conditions were mapped and evaluated.

Results indicated that over the two decades between 1990 and 2010 there was an increase in the extent of cultivated land and large expansion in eucalyptus plantation at the expense of natural forest and grazing lands. Results indicate that, with few exceptions of RWM interventions practised, there were mainly poor and inefficient rainwater management practices. The overall effect leads to inadequacy of water for household consumption, livestock and for intensifying agricultural production via small scale irrigation systems. Deforestation and poor resource management resulted in soil degradation, reduction of hydrological regimes and water productivities in the watershed.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

The hydrology of Holetta River and its seasonal variability is not fully studied. In addition to this, due to scarcity of the available surface water and increase in water demand for irrigation, the major users of the river are facing a challenge to allocate the available water.

Therefore, the aim of this research was to investigate the water availability of Holetta River and to study the water management in the catchment. Soil and Water Assessment Tool (SWAT) modelled the rainfall runoff process of the catchment. Statistical (coefficient of determination [R2], Nash- Sutcliffe Efficiency Coefficient [NSE] and Index of Volumetric Fit [IVF]) and graphical methods used to evaluate the performance of SWAT model.

The result showed that R2, NSE and IVF were 0.85, 0.84 and 102.8, respectively for monthly calibration and 0.73, 0.67 and 108.9, respectively, for monthly validation. These indicated that SWAT model performed well for simulation of the hydrology of the watershed. After modelling the rainfall runoff relation and studying the availability of water at the Holetta River, the water demand of the area assessed. CropWat model and the survey analysis performed to calculate the water demand in the area. The total water demand of all three major users was 0.313, 0.583, 1.004, 0.873 and 0.341 MCM from January to May, respectively. The available river flow from January to May obtained from the result of SWAT simulation. The average flow was 0.749, 0.419, 0.829, 0.623 and 0.471 MCM from January to May respectively. From the five months, the demand and the supply showed a gap during February, March and April with 0.59 MCM.

Therefore, in order to solve this problem alternative source of water supply should be studied and integrated water management system should be implemented.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Over the past five decades, gullying has been widespread and has become more severe in the Ethiopian highlands. Only in very few cases, rehabilitation of gullies has been successful in Ethiopia due to the high costs.

The objective of this paper is to introduce cost effective measures to arrest gully formation. The research was conducted in the Debre-Mewi watershed located at 30 km south of Bahir Dar, Ethiopia.

Gullying started in the 1980s following the clearance of indigenous vegetation and intensive agricultural cultivation, leading to an increase of surface and subsurface runoff from the hillside to the valley bottoms. Gully erosion rates were 10–20 times the measured upland soil losses. Water levels, measured with piezometers, showed that in the actively eroding sections, the water table was in general above the gully bottom and below it in the stabilized sections.

In order to develop effective gully stabilizing measures, we tested and then applied the BSTEM and CONCEPT models for their applicability for Ethiopian conditions where active gully formation has been occurring. We found that the model predicted the location of slips and slumps well with the observed groundwater depth and vegetation characteristics.

The validated models indicated that any gully rehabilitation project should first stabilize the head cuts. This can be achieved by regrading these head cuts to slope of 40 degrees and armoring it with rock. Head cuts will otherwise move uphill in time and destroy any improvements. To stabilize side walls in areas with seeps, grass will be effective in shallow gullies, while deeper gullies require reshaping of the gullies walls, then planting the gully with grasses, eucalyptus or fruit trees that can be used for income generation. Only then there is an incentive for local farmers to maintain the structures.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

The irrigation system in Kobo-Girrana valley is extensively developed into modern drip irrigation using ground water sources. Tomato and onion are among the major vegetables grown under drip irrigation. However, the drip lateral spacing is fixed to 1m for all irrigated crops. This leads to low crop water productivity, loss of land, less net return income and un-optimized irrigation production.

An on-station experiment was conducted to determine the effect of drip line spacing and irrigation regime on yield, irrigation water use efficiency and net return income. The experiment was carried out for two consecutive irrigation seasons in 2010/11 and 2011/12 at Kobo irrigation research station. The experimental treatments were: two lateral spacing of single row and double row corresponding to each test crop and three irrigation regime (Kp = 0.8, 1.0 and 1.2).

The results revealed that an interaction effect between the lateral spacing and irrigation regime was obtained in marketable yield and water productivity of test crops. Application of 0.8 Kp with 2m lateral spacing and 1.2 Kp with 1m lateral spacing provided relatively higher marketable yield of tomato and onion, respectively. Similarly, high water productivity was recorded with same irrigation depths and spacing regimes as to the yield.

This result generally revealed that one lateral design for each two plant rows gave high net income than the one lateral design for each one plant row for drip irrigated fresh marketable yield of onion and tomato. An optimized production and irrigation efficiency can be attained by applying irrigation depth adjusted by the given pan coefficients and drip lateral spacing in Kobo areas.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

This paper examines the advance time of furrow irrigation at Koga.

Koga irrigation scheme was developed to irrigate about 7004 ha. Furrow irrigation is the recommended method for the distribution of water. However, furrow irrigation has inherent inefficiencies due to deep percolation on the upper end and runoff at the lower end of the furrow. These losses depend on furrow length, furrow gradient, surface roughness, stream size and cutoff time. These factors play significant role to influence the advance time of irrigation and the operation rule of the scheme.

The experiment was conducted during 2012 irrigation season in two periods (February and April). The advance time of irrigation was monitored at three discharge rates and four furrow gradients at 90–110 m furrow length. The required discharge was measured using RBC flume. The average advance time at respective discharge rates of 0.3, 0.6 and 0.8 litre/sec range from 290–460 min, 150–437 min and 100–294 min during 1st irrigation; and 115–370 min, 78–189 min and 43–217 min during 2nd irrigation. The advance time vary greatly among the discharge rates when the furrow length increases. The advance time of water at 0.5, 1.0, 2.0 and 2.5 % gradients was 236, 181, 197 and 398 min at 1st irrigation and 163, 175, 220 and 88 min at 2nd irrigation respectively. Furrow gradients and surface irregularities result in great variation of advance time. The advance time becomes shorter when the field gets smoother during 2nd irrigation. Under non-levelled and irregular field conditions, 0.6–0.8 litre/sec application rate can be suggested to irrigate 30–40 m furrow lengths in order to improve application efficiency above 60% and to optimize the daily operation rule of the overall scheme.

The result of this study indicates the relevance of examining the furrow length, discharge and application time recommended in the feasibility study of irrigation schemes.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Mixed crop–livestock farming system is a major livelihood strategy in most sub-Sahara African countries. Low water use efficiency and water scarcity characterize the dominant rainfed agricultural production system in the densely populated highlands of Ethiopia. Improving water productivity in the rainfed system is among the ways of overcoming the water scarcity challenge.

This study was conducted in Meja watershed, located in Jeldu district, West Shewa in the Ethiopian part of the Blue Nile Basin to estimate economic crop water productivity based on agro-ecology and crop management practices. The watershed was classified into three landscape positions (local agro-ecologies) and major crops representing at least 70% of each landscape position were identified through discussion with farmers and development agents.

Five farmer fields were randomly selected for each major crop and crop management practices implemented by the farmers were monitored and yield (grain or tuber and straw) was measured at harvest. The local market value of the crops and the production cost was estimated based on the local market value for labour and other inputs. CROPWAT model was used to estimate effective precipitation based on weather data generated using NewLocClim and crop characteristics.

The result indicated that the landscape positions, crop variety and management practices significantly influenced the net economic water productivity. The net economic crop water productivity for barley, wheat, tef, sorghum and maize grains and fresh potato tubers were 3.31, 2.45, 3.09, 3.01 and 5.20 and ETB 13.56 m-3, respectively. Similarly, physical water productivity of the crops ranged from 0.47 for teff to 9.98 kg m-3 for fresh potato tubers. Hence, farmers can enhance economic benefit from the land and water resources they are endowed with rainfed by using improved agronomic practices that could raise grain/tuber and biomass yield. Enhancing improved input use, improving access to market for outputs and integrating livestock with crops may further augment the benefit at system scale.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Ethiopia’s policies and programs on sustainable land and water management have evolved over several decades and have had important positive impacts on land management and livelihoods.

These policies and programs can be further transformed and integrated into a new paradigm that will better enable poor smallholder farmers to improve their food security, livelihoods and incomes while conserving the natural resource base.

Implementation of the eight core elements of this paradigm will greatly improve the long-term benefits of the Sustainable Land Management Program and related interventions in Ethiopia.

At local levels it will enable rural women and men to improve their incomes and livelihoods. At national level it will help raise the rate of agricultural growth while conserving precious natural resources.

Essential elements
Eight elements make up the new paradigm. Success is most likely if all of them are included in an integrated way. A landscape or watershed perspective is central to the new paradigm.

  1. Empower local communities and develop their leadership capacities to achieve long-term benefits and sustainable outcomes.
  2. Integrate and share scientific and local knowledge and encourage innovation through ‘learning by doing’.
  3. Strengthen and transform institutional and human capacities among all stakeholders to achieve the potential benefits of sustainable land management.
  4. Create, align and implement incentives for all parties to successfully implement sustainable innovative programs at scale.
  5. Adapt new models, learning and planning tools and improved learning processes to increase the effectiveness of planning, implementation, and capacity building.
  6. Integrate multiple rainwater management interventions at watershed and basin scales to benefit rainwater management programs.
  7. Attend to downstream and off-site benefits of rainwater management as well as upstream or on-farm benefits and costs.
  8. Improve markets, value chains and multi-stakeholder institutions to enhance the benefits and sustainability of rainwater management investments.

Download the brief

Read the full technical report “A new integrated watershed rainwater management paradigm for Ethiopia: Key messages from the Nile Basin Development Challenge, 2009–2013

Next Page »