The hydrology of Holetta River and its seasonal variability is not fully studied. In addition to this, due to scarcity of the available surface water and increase in water demand for irrigation, the major users of the river are facing a challenge to allocate the available water.

Therefore, the aim of this research was to investigate the water availability of Holetta River and to study the water management in the catchment. Soil and Water Assessment Tool (SWAT) modelled the rainfall runoff process of the catchment. Statistical (coefficient of determination [R2], Nash- Sutcliffe Efficiency Coefficient [NSE] and Index of Volumetric Fit [IVF]) and graphical methods used to evaluate the performance of SWAT model.

The result showed that R2, NSE and IVF were 0.85, 0.84 and 102.8, respectively for monthly calibration and 0.73, 0.67 and 108.9, respectively, for monthly validation. These indicated that SWAT model performed well for simulation of the hydrology of the watershed. After modelling the rainfall runoff relation and studying the availability of water at the Holetta River, the water demand of the area assessed. CropWat model and the survey analysis performed to calculate the water demand in the area. The total water demand of all three major users was 0.313, 0.583, 1.004, 0.873 and 0.341 MCM from January to May, respectively. The available river flow from January to May obtained from the result of SWAT simulation. The average flow was 0.749, 0.419, 0.829, 0.623 and 0.471 MCM from January to May respectively. From the five months, the demand and the supply showed a gap during February, March and April with 0.59 MCM.

Therefore, in order to solve this problem alternative source of water supply should be studied and integrated water management system should be implemented.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Advertisement

Most soil erosion studies conducted in Ethiopia are focused on quantification of sediment and lack specific information on temporal and spatial variability of sediment and its associated plant nutrients loss. This study was therefore quantified and characterized runoff and sediment along with estimated the on-site financial cost of erosion in terms of its concomitant crop yield loss due to the nitrogen and phosphorus lost in consequence of erosion.

Data on discharge and runoff samples for sediment concentration and nutrient content was collected at three monitoring stations (Melka, Galesssa and Kollu) in Meja watershed in Jeldu district, in the Ethiopian part of the Blue Nile Basin. Daily samples collected during the rainy season were analysed in the laboratory of Ambo University for sediment content of runoff, particle size distribution of the sediment and nitrogen and phosphorus content of both the sediment and runoff. Preliminary results indicate that both runoff volume and sediment concentration vary with space and time. While the maximum runoff volume was recorded in the middle of the rainy season, sediment concentration decreased towards the end of the rainy season in response to increased ground cover. The average suspended sediment concentration during the rainy season was 3.0 ± 1.1, 2.2 ±1.3 and 1.4 ± 0.9 g L-1 while the total sediment yield ranged from 74 t km-2, 248 t km-2 and 604 t km-2 at Melka, Galesssa and Kollu, respectively. The financial cost of erosion was estimated at 595, 510 and 2475 ETB ha-1 from Melka, Kollu and Galessa, respectively.

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.

Understanding the basic relationships between rainfall, runoff, soil moisture and ground water level are vital for an effective and sustainable water resources planning and management activities. But so far there is no hydrological study in Meja watershed that aims to understand the watershed characteristics and runoff generation processes.

This study was conducted to understand runoff generation processes and model rainfall runoff relationship in Meja watershed having a drainage area of 96.6 km2. The watershed is one of the three research sites of International Water Management Institute (IWMI) developed in early 2010 in the upper Blue Nile Basin of Ethiopia. In the study, primary data of soil moisture, shallow ground water level, rainfall and runoff were collected from the hydrological monitoring network in the watershed.

Hydrological models like HBV and RRL SMAR were configured to understand the relationship between rainfall and runoff in the watershed. Relationships between rainfall, soil moisture, shallow ground water level and discharge were developed to understand runoff generation processes in the watershed.

According to one year and three months data, there is no strong daily rainfall and runoff relationship (r2 <0.5) in Meja and Kolu which is a nested sub-watershed; this may be due to abstractions such as irrigation and human interventions in the watershed. There is a strong linear relationship of rainfall and monthly averaged volumetric soil moisture in most layers of Meja and its nested sub-watersheds. The general relationship between runoff and monthly averaged soil moisture at different layers in Meja watershed and Kolu is strong and linear. Analysis of rainfall runoff models indicated better performance of HBV than RRL SMAR model.

See the presentation:

Read the paper

See the full proceedings of the NBDC Science meeting


This paper was first presented at the Nile Basin Development Challenge Science meeting. The NBDC Science meeting was held on 9 and 10 July 2013 at the ILRI-Ethiopia campus, with the objectives to exchange experiences and research results across NBDC scientists involved in the NBDC projects and to discuss challenges and possible solutions.